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APPLTICATION OF STATISTICAL FILTER THEORY TO
THE INTERPLANETARY NAVIGATTON AND
GUIDANCE PROBLEM

By John S. White, George P. Callas,
and Luigi S. Cicolani

Ames Research Center
Moffett Field, Calif.

SUMMARY

This paper presents the results of a study wherein the Kalman filtering
technique is applied to Interplanetary Navigation and Guidance. The study
considers the number, type, and timing of observations to be made, and the
nunber and timing of wvelocity corrections. Both fixed time-of -arrival guid-
ance and a periapse-control guldance are ccnsidered. The results are pre-
sented principally in terms of uncertainty on arrival, miss on arrival, and
magnitude of velocity increments required.

It is shown that the observations can be restricted to sextant measure-
ments of the target planet, the launch planet, and the moon (when in the vicin-
ity of the earth), and that daily observations are desirable during the major
portion of the flight, with a muich more frequent observation schedule at each
end. Four velocity corrections should be made which, with a periapse-control
guldance law, use a total of 30 m/sec velocity increment for each leg of the
mission, resulting in a miss in the radius of periapse of 4 to 5 km.

INTRODUCTION

Preliminary analyses of manned interplanetary missions (e.g., refs. 1 and
2) show that some sort of midcourse navigation and guidance must be considered.
It is assumed that this navigation and guidance scheme should probably be
self -contained aboard the vehicle, both in terms of data taking and computing,
and will provide an estimate of the accuracy in arriving at the target plan-
ets, and the amount of midcourse corrective fuel required.

By interplanetary navigation and guidance we mean the process of measur-
ing the space vehicle trajectory and exercising control so as to arrive at the
target planet with certain acceptable end conditions. 1In general, one would
like to optimize this process in the sense of selecting tile most economical
measurement scheme and control policy which will satisfy the end condition
requirements.



However, in this paper actual optimization is not attempted because of
the great complexity of the problem. Instead, we take the somewhat pragmatic
and empirical approach of specifying what seems to be a "good" system with a
number of free parameters associated with the observation and correction
schedule, and then adjust the parameters until we obtain what seems to be
satisfactory performance. In this way we determine the requirements of an
on-board guidance scheme and the amount of midcourse fuel required.

To expedite this procedure we divide the problem into its two natural
parts, namely, trajectory determination and control. In the first part Kalman
filter theory is used as a basis for estimating the trajectory, and in the
second part impulsive velocity corrections are assumed which are computed
using control laws which will ccrrect estimated end conditions to correspond
to those desired.

This same general approach was used in the lunar guidance work previously
done at Ames (refs. 3 to 5), and the present paper may be regarded as an
extension of the earlier studies. Some of the questions to be considered
are: (1) the type of observations and their timing,(2) the number and time of
making velocity corrections, and (3) the effect of sighting accuracy and
initial condition errors and uncertainties.

Certain ground rules for this study must be stated. First, we are
concerned only with the midcourse guidance phase, which is defined, for the
purpose of this paper, as starting at the periapse of the departure hyperbola
and ending at the vacuum periapse of the arrival hyperbola. Secondly, the
midcourse corrective maneuvers which will be required are impulsively applied.
Third, by assumption the trajectory estimation scheme is a completely on-board
operation; that is, observational data will be obtained by on-board sensors,
and the computation will be carried out on-board. This requirement results
from the fact that we are considering a manned mission, and we do not want to
depend upon the earth-vehicle communication link. Of course, in an actual
mission, data gathered from earth-based equipment would undoubtedly also be
used, and the computations would be repeated on the ground to provide as much
redundancy as possible.

In the first section of the report, the mathematics involved in the
trajectory estimation and guidance phases of the problem are given. In the
second section, the computations are described which are necessary for com-—
puting the statistics of the system performance, the manner in which the
computations of planetary and vehicle motion were implemented for the com-
puter program is described, and finally the assumptions made regarding the
types and scheduling of observations are outlined. In the final section the
results obtained from the computer program are presented in terms of the
statisties, or covariance matrices, of the random variables of interest, such
as miss at the target, required velocity changes, etc.
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SYMBOLS
transition matrix relating deviations at the end point to
present deviations
submatrices of A
ratio of uncertainty in planet radius to planet radius
covariance matrix of miss at the end point
covariance matrix of uncertainty at the end point

covariance matrix at the end point in perigee coordinate
system

scalar constants used in updating elliptical motion

guidance law matrix relating velocity correction to present
deviations

matrix of partial derivatives of the observed quantity with
respect to the state variables

submatrix of H

identity matrix

weighting matrix

covariance matrix of present uncertainty

covariance matrix of present uncertainty after an observation
submatrices of P

covariance matrix of present deviations

covariance matrix of present deviations after a velocity
correction

covariance matrix of observation errors
covariance matrix of instrument errors

covariance matrix of errors in measuring velocity
element of Q

position vector of a body in conic motion



position vector of a body in conic motion at reference time

R

5] covariance matrix of errors in making velocity correction

Sq submatrix of S

t time

v velocity vector of a body in conic motion

VR velocity vector of a body in conic motion at reference time

VoM covariance matrix of desired velocity corrections

X state vector representing position and velocity deviations from
reference

bq state vector of estimated deviation from reference

Xa corrective velocity vector

4 half the subtended angle of an observed body

6rp rms value of the deviation in radius of periapse

ORg uncertainty in position of observed body

oV vector of corrective velocity

AV sum of AV

o(ti,t3) transition matrix relating the state at time +ti{ <to state at
time tj

()T transpose

Planetary Symbols:

© Sun

Y Mercury

? Venus

] Earth

d Mars
Moon

b\ Deimos

° Phobos



DESCRIPTION OF PROBLEM

As previously mentioned the problem of interplanetary guidance can be
conveniently broken down into two parts. First is the navigation problem, in
which one observes some variables and estimates the present trajectory.
Second is the guidance phase, in which one estimates how far the present
trajectory misses the desired end condition, determines, by use of a guidance
law, a corrective maneuver which will reduce this miss to zero, and finally
performs this maneuver.

Trajectory Estimation

For a navigation scheme based on the Kalman filter theory, observation
data are obtained and compared with the expected value of the observation, as
computed from the estimated trajectory. The deviation is multiplied by a
weighting matrix and then added to the trajectory estimate to provide an
improved estimate. The weighting matrix, as derived by the Kalman method, is
the optimal filter for a linear problem and thus uses the observed data to
maximum advantage insofar as the measured deviations are linear functions of
the difference between the estimated and actual trajectories. It is computed
by use of the covariance matrix of the error in estimation, the covariance
matrix of the errors in making the observation, and the partial derivatives of
the observed quantities with respect to the state vector. Thus, in order to
compute the weighting matrix, one must first compute these required covariance
matrices.

The equations used for the navigation scheme are summarized and described
below and referenced to corresponding equations in references 3 and 4 where
they are derived.

We assume that we are given P(t), the covariance matrix of errors in the
estimated trajectory at some initial time, t = t,, and we desire to process
the results of an observation at some later time, t = t,.

We must first update the estimated state vector from time t, to time
t, as follows:

£(t1) = o(t1,t0)%(t0) (1)
(eq. (2), ref. 3) where ®(ti1,to) is the transition matrix which relates
conditions at time 1 +to those at time O. This same transition matrix can
be used to update the covariance matrix also, as

P(t1) = o(t1,85)P(to) & (t1,t0) (2)

(eq' (15); ref. 3).



At the time of the observation we must compute the H matrix, which is
the partial derivative matrix of the observed quantity with respect to the
state variables. The H matrix will have the same number of columns as there
are variables in the state vector, and will have one row for each different
quantity observed simultaneously. If we consider observations which depend
only on position and not velocity, as is done in this study, then the H
matrix can be partitioned into two matrices of 3 columns each;

A

H = [Hl oJ

The elements of the H matrix will be given when we consider the types of
observations to be made. The P matrix, updated to the time of the observa-
tion, can also be partitioned into 3X3 submatrices:

Py PzT
P Pq

Then the weighting matrix K is given by the following:

P

=
I

T _
Hi [HlPlﬂlT + Q] * (3)
P>

(eq. (17), ref. 3) where @Q 1is the covariance matrix of observation errors.
This weighting matrix can then be used to update the P matrix to include
the data just obtained by the observation as follows:

P! = P - KHP (%)

(eq. (16), ref. 3).

The result of equation (4) is then a new covariance matrix, P', which is
used as the initial P matrix in equation (2) when the same sequence of events
is repeated for the next observation, and so on.

We also need to derive an additional equation to determine the new value
of the P matrix after a velocity correction has been made. It is assumed
that the velocity correction is measured by three inertially oriented accel-
erometers, and that the covariance matrix of measurement errors is given by
the 3X3 Qy matrix. If one assumes that the measurement errors are small, we
find that the new P matrix is given as:

[Pl' Py [Pl Pyt -
P! = = 5
Pg' Py P>  Pat@y



Thus, equations (1) through (5) allow the computation of the P matrix at
any point along the trajectory, and thus determine the statistics of the
difference between the actual and estimated trajectory.

Guidance Laws

The previous discussion has been concerned with the estimation of the
vehicle trajectory. We now wish to consider the second part of the control
problem, namely, determining and performing some corrective maneuvers which
will allow the vehicle to arrive at the target planet with no errors in the
specified arrival conditions. The guidance law then relates the corrective
maneuver to the information concerning the estimated trajectory.

It is assumed that the vehicle, on arrival at the target planet, will
use atmospheric braking to reduce its energy relative to the planet. 1In
order to do this successfully, the vacuum periapse must be low enough that
enough energy can be dissipated, and yet high enough that g limits are not
exceeded. Thus one has a corridor of acceptable periapse distances.

In order to develop such a guidance law, one must first decide on some
method for guaranteeing that the vehicle will arrive within the corridor.
One simple overspecified approach is to first determine a nominal trajectory
inside the corridor at periapse, and then guide the vehicle so that it
arrives at this specified point at the specified time. This is a fixed time-
of-arrival guidance scheme, and the miss is the distance from the vehicle to
the specified point at that time. An alternate approach, a little more com-
plicated, is to directly control the radius of periapse to the desired value
within the corridor with some control of the out-of-plane error, and to do
this using a minimum amount of fuel. This is called a radius-of-periapse
guidance scheme, and allows the time cof arrival to vary. Other approaches
could also be used, which would use still other guidance laws. Further, it
may be expedient to use different guidance laws during different phases of
the mission.

Whichever guidance lay is used must relate the corrective maneuver Xag
to the present deviation x, so that the desired end conditions are satisfied;
that is,

xg = GR (6)

(eq. (DA), ref. L) where the G matrix is the mathematical expression of the
guidance law.

The fixed time of arrival guidance law is derived in reference Uk,

equations (7) and (D7) as
0 0
G = - . (7)
A A, I



A1 Ag
The terms in this equation come from A = [: , which is the transition

Az Ag

matrix relating deviations in position and velocity at the fixed time of
arrival to present position and velocity deviations from the reference
trajectory.

The radius-of-periapse guidance law is derived in appendix B, equa-
tion (Bl3), which contains the matrix

0 0
G = (8)
OWTadNT  -OOT-FET

The quantities ﬁ, W, K, and N are all functions of the reference trajectory,
and are described in the appendix. The terms involving N are used to
control the out-of-plane error, and the other terms control the periapse
error.

DESCRIPTION OF SIMULATION

The equations in the previous section describe, in statistical terms,
the required on-board computations. In order to study the performance of
this system, we need to determine the statistics of the deviation between the
actual and reference trajectories. Also, these statistics are functions of
the planetary motions, the vehicle trajectory, and the type and timing of
observations made to improve the estimate of the trajectory. These features
of the interplanetary navigation and guidance problem will be considered in
the next few sections.

Statistics of System Performance

In order to determine the statistics of the final miss, we must first
develop the statistics of the deviation between the actual and reference
trajectories, the PAR covariance matrix.

This matrix is updated from one time to the next in the same fashion as
the P matrix, by use of equation (2). It is not changed by an observation,
but will be changed by a velocity correction. The equation for this is given
by equation (D11) in reference 4 as

PAR' = (I +G)(PAR - P)(I +G)T +P + 8 (9)

As can be seen from equations (7) and (8), the G matrix can be
partitioned as follows:




0 0
Gz Ga

With this partitioning, the 3X3 covariance matrix of expected velocity
corrections can be computed as follows:
T
VoM = (G2 G4)(PAR - P)(Gz Ga) (10)
(eq. (D19), ref. 4).

The S matrix in equation (9) represents the statistics of the errors in
making the desired velocity correction and can be represented as

0 0 P
s=[ ] (11)
0] Sa

In computing the S matrix it was assumed that: (a) the magnitude of the
actual velocity change deviates from the desired magnitude by an unknown
amount whose standard deviation is proportional to the correction, and by a
random cutoff error, and (b) the direction of the actual correction differs
slightly from that of the desired correction because of a pointing error.
These three random variables (the constant of proportionality, the cutoff
error, and the pointing error) are all assumed to have zero mean and specified
standard deviation. An equation for computing the S; matrix (which equals
L) is derived in equation (A16).

(see eq. (D16), ref. 4).

These equations give a statistical description (second-order statistics)
of the estimated and actual trajectories, and of the corrective maneuvers.
However, for a clearer picture of what is happening along the trajectory,
some additional gquantities are desired.

In space navigation, one is not really interested in one's present
position per se but, instead, is interested in the miss and the uncertainty
in the knowledge of position at some future time, T, when one expects to be
at the target point. This can be computed if the transition matrix from now
to the final time is given. This matrix can be defined from equation (1) as
A = ®(T,t). Thus the 6X6 covariance matrix of the miss is

1l

Episs = A(PAR)AT (12)

and that of the uncertainty is

Egne = A(P)AT (13)

[}




The upper left 3X3 portions of these matrices describe the statistics of the
position components of the miss and uncertainty, and the square root of the
trace of these 3X3's gives the rms total position miss and uncertainty, rnpiss

and rynes respectively.

We are also interested in rms values of the altitude, downrange, and
crossrange components of miss and uncertainty at the time of reference peri-
apse. These components can be determined by rotating the E matrices from
the reference coordinate system into a periapse coordinate system defined as
follows: the X axis along the radius vector from the center of the target
planet to the periapse of the reference trajectory, the Z axis perpendicular
to the X axis and the velocity vector at this periapse, and the Y axis to
complete a right-hand orthonormal triad. ILet € represent the rotational
matrix relating the two coordinate systems. Then the covariance matrix in the
periapse coordinate gystem is Ep = GEGT, and the three diagonal elements of

represent the variances of altitude, downrange, and crossrange miss (or
uncertainty), respectively. Also of interest is 6rp, the rms deviation in
the radius of periapse. Eguation (B22), derived in appendix B, relates the
deviation of the radius of periapse to the present state vector. Taking the
expected value of this equation gives

6rp2 = ZT(PAR)Z
where 2 is defined in equation (B20).

The square root of the trace of the VoM matrix (eq. (lO)) gives the
expected value of the magnitude of the individual velocity correction AV. In
order to find the total velocity correction made, AVp, that is, the sum of the
individuval velocity corrections, one must combine the expected values for each
of the individual corrections. The method of combining these values depends
upon the assumptions made regarding their correlation. If one assumes that
the individual velocity corrections are perfectly uncorrelated, then one adds
the individual AV's on a root sum square basis; that is, AVp = JZZAV)Z. On
the other hand, if they are perfectly correlated, then one adds the AV on a
linear basis; that is, AVp = 2AV. The true situation is somewhere between
these two cases, but for this report we have used the more pessimistic linear
basis giving

LT = AV (14)

We now have the equations which enable us to obtain statistical data
concerning the uncertainties in the knowledge of the trajectory, the disper-
sion of the trajectory, and the midcourse velocity corrections.

Vehicle Motion

The behavior of a vehicle in space can be described by means of conic
sections plus minor perturbations due to noncentral force fields. Since, in
this study, we are concerned only with relatively small deviations from a
reference trajectory, it was felt that the perturbations could be ignored and
the conic sections alone used to describe the vehicle trajectory. That is,
the conic section approximation should have the same general characteristics

10




as those of the exact trajectory in regard to deviations. Thus, for the
purpose of a study of the navigation scheme, precise n-body trajectories
need not be computed.

Since it was desired to study effects from periapse of the departure
planet to periapse of the target planet, a patched_conic technigue was
required. In this case, the vehicle traversed sections of three conics, a
hyperbola about the departure planet, an ellipse about the Sun, and a hyper-
bola about the target planet. At the transition points, the position and
velocity of the two conics, both expressed in the same coordinate system, were
equated to provide the desired match. The transition points were located at
the sphere of influence of the appropriate planet, and were computed by the
formula a(m/M)2/5, where a 1s the mean Sun-planet distance, m dis the mass
of the planet, and M 1is mass of the Sun. The following table lists the
radii of the spheres, as given in reference 6 (p. 93).

Venus 616,960 km
Earth 924,820 km
Mars 577,630 km

The reference trajectory of the vehicle was specified by giving the
position and velocity of the vehicle at the sphere of influence of the depar-
ture planet. These conditions were adjusted so as to give a satisfactory
departure periapse and a satisfactory arrival altitude, while holding the
inclination of the vehicle orbit with respect to the ecliptic to small values
(to take advantage of planetary motion). When it was desired to obtain the
vehicle's position and velocity at some other time, the reference values were
updated as follows:

r frg + gvR

(15)

v er + évR

where f,g,f,é are functions of the initial position and velocity and the
change in eccentric anomaly from the reference position to the desired posi-
tion. These equations are derived in reference 7.

Planetary Motion

Since the vehicle's trajectory is described by conic sections, it seems
reasonable to describe the planetary orbits by conic sections also. The
elements of the planetary conics were obtained from the 1964 Nautical Almanac
(ref. 8) and the Explanatory Supplement (ref. 9). These reference elements
were all expressed in the equinox and ecliptic of Jan. 6.0, 1964, and the
variations of these orbits were determined with respect to this fixed
ecliptic. This procedure then fixed the reference inertial system for the
entire problem as being the equinox and ecliptic of Jan. 6.0, 196k.

The orbital elements were updated by means of their variations to a

reference time in the immediate vicinity of the launch date, and then,
throughout the flight of the vehicle from the earth out to some planet and

11



back, the conic elements were considered fixed. At this reference time, the
position and velocity of the planet were determined in three coordinates, as
rpp + Vgp. Equation (15) was then used to update the planetary position and
velocity as desired.

The positions of the natural satellites of the Earth and Mars are also
required so that they can be used as bodies to be observed. Their orbital
elements were obtained from the Explanatory Supplement (ref. 9), and treated
in exactly the same fashion as the planets. The values used for these ele-
ments and their variations are given in table I for each of the planets and
satellites.

Observation Types and Schedules

The principal types of measurements that can be made on-board the vehicle
are optical determinations of an angle. Theoretically other guantities might
also be measured, such as range and range rate from a radar, relative velocity
from some velocimeter, and angular velocity of the line of sight, but these
all have practical limitations and will not be considered here. There are two
optical instruments which can be used, the sextant and the theodolite. In a
vehicle the sextant, which would be used to measure the angle between a star
and some body in the solar system, is quite convenient to use. The theodolite
is more awkward, both from the standpoint of the man who must make two adjust-
ments at once, and from the standpoint of the equipment, since the theodolite
must be mounted on a stable platform.

In a general research study such as this, however, the theodolite is
easier to consider, since it does not require, as does the sextant, any
decision as to which of the many stars should be used to provide the second
line of sight. Therefore, for this study we are principally considering
theodolite data, although this will be compared with sextant data.

It should alsc be pointed out that using either instrument one can
determine the subtended angle of a planet and, from this, deduce the range to
the planet. This is a most inaccurate measurement, useful only at extremely
close ranges, and is not considered here.

As mentioned earlier, it is necessary to compute the H matrix
associlated with each type of observation. For a theodolite, we have

oo  Jda  Ou X2 vz, z2 - R2

0x Jy Oz R2R' ReR!' R2R!
H = -

9B 9B 9B =y % o

ox OJy Oz R'2 R'2

where o and B are the celestial latitude and longitude of the observed body
as seen from the vehicle, X, y, and z are components of the vector from the
vehicle to the observed body, R =x2 + y2 + z2, and R' =x2 + y2. These
equations are derived in appendix C of reference 3.

12



For a sextant, using the same notation except that o 1is the measured
sextant angle, we have

0= " da da da > - [(X/R)COS @ - xg (y/R)cos a - yg (z/R)cos o - zg }

~\ 3x Jdy dz R sin o R sin « R sin a

where Xxg,ys,%Zg are the components of the unit vector in the direction of the
star.

In order to process an observation using this estimation scheme, there
must also be available the covariance matrix of errors in making the observa-
tion. The observation error can be considered to have three components, all
assumed uncorrelated with respect to each other and from one observation to
the next. The first component is an instrument error, which is caused by
inaccuracies in the observing instrument itself, and in the pilot's ability
to use it. The covariance matrix of this instrument error is defined as
Qinst, and must be known a priori. The second component is inversely propor-
tional to range, and can be considered as an additional pilot error due to the
inability to locate the center of an extended disk, or as an error in the
knowledge of the radius of the observed body.l Its covariance matrix is
c2y2I, where ¢ is the rms value of the ratic of the uncertainty in the
radius to the radius of the body, 7y is one-half the angle subtended by the
observed body, and I is the identity matrix. The third component of error
is due to the uncertainty in the position of the observed body.Z If the
observed body is the central body for the conic section, this component is
zero. If, on the other hand, we are observing a satellite of the central
body, then this position error will exist. To account for this correctly, the
uncertainty in the orbital elements should be considered individually and
appropriately combined to get an uncertainty in the x,y,z coordinates of the
satellite. For simplicity in this study, however, it was assumed that the rms
error in the observation due to the position error could be specified as
8Rg/R, where ®Rg 1s the rms value of that component of the position uncer-
tainty which affects the observation, and R 1s the distance to the observed
body. The covariance matrix of this error is then (3Rs/R)2I. With these
assumptions, the total covariance matrix of observation errors, which is a
diagonal matrix with equal elements g2, becomes

2
Q = Qingt + [0272 +‘<§§%> }I

which is then used in equation (3). Figure 1 is a plot of q versus range
for several planets and satellites for those representative values of Qinst,
c, and SRy wused in the study.

Haying discussed the types of observations to be made, we must now
discuss what bodies should be observed and when. It seems apparent that in
the vicinity of a planet one should observe that planet, and possibly its

This error may have a bilas type component, which would result in a time
correlation that has been ignored for simplicity.

2The time correlation, resulting from the bias effects of this error,
was ignored for simplicity.

13



moons, and also perhaps the Sun. In the heliocentric portion of the
trajectory, one should consider observing the departure and arrival planets,
the Sun, and the other planets.

For the timing of observations, one wants to make more observations at
times when the positicon along the trajectory, and therefore the observed quan-
tity, is changing rapidly, namely, at the beginning and end of the flight, and
fewer observations during the central portion of the trajectory when observ-
ables are changing slowly. When the uncertainty in the knowledge of final
miss has reached some satisfactorily small quantity, then no further observa-
tions are required.

The observation schedule is selected to minimize the miss and wncertainty
at the end point, and also to minimize the amount of fuel required to make the
velocity corrections. Thus, the observation and velocity schedule are inter-
dependent and must be optimized together.

RESULTS OF SIMULATION STUDY

Reference Trajectories

In this section the results of the simulation study are presented. The
previous section has defined all the equations used to determine the desired
statistics and discussed various considerations concerning observation and
velocity correction schedules. To be more specific, we must first specify the
reference conditions.

Three different reference trajectories were used as examples for this
simulation. The first trajectory is a high-speed round trip from Earth to
Mars. This is near the 1971 opposition, with 112-day flight time to Mars,
T-day stay at Mars, and 191l-day return flight. The second trajectory is a
lower speed round trip from Earth to Mars, also in 1971. The outbound trip is
153 days, with a 6-day stay at Mars. The return flight is 251 days. The
third trajectory is also a round trip to Mars, with a swingby of Venus on the
return leg. This swingby has the advantage of reducing the entry velocity on
return to the Earth, with essentially no additional propulsive requirements.
This trajectory is in the 1975 period. The Earth to Mars trip time is
170 days. The stay time at Mars is 30 days, and the return trip is 185 days
to Venus and 125 days back to Earth.

These three trajectories will be termed the high speed, low speed, and
Venus swingby, respectively. Additional details about them are listed in
table IT. From this table, it can be seen that the Venus swingby trajectory
is not absolutely continuous at Venus. ©Small changes in the reference con-
dition could be made to make this trajectory continuous. However, for the
purpose of this study it was not felt necessary to make this correction.
Plots of all three trajectories, projected onto the plane of the ecliptic,
are given in figures 2, 3, and 4, along with the motion of the various
planets. The orbits relative to the Sun, and relative to the launch and

1k



target planets are shown. On these figures, the time from departure is
indicated. For the heliocentric portion, the symbols indicate which departure
is referred to.

It can be seen from these plots that in some cases the vehicle passes
relatively close to the Moon. The closest approach occurs on the outbound leg
of the high speed trajectory (fig. 2(b)). In this case the distance of
closest approach to the Moon is over 100,000 km, which is well outside the
sphere of influence of the Moon. It seems reasonable to assume, therefore,
that for the purpose of this study, the turning effect of the Moon on these
trajectories can be neglected.

The effects of close passage on the information content of the observa-
tions cannot be neglected, as will be shown later. In order to isolate this
effect and to show the effects of launching at different times during the
lunar cycle, the mean anomaly of the Moon was changed while keeping all other
lunar orbital parameters fixed. This had the effect of moving the Moon in its
orbit with respect to the vehicle trajectory. Such a rotation will be denoted
as "Moon (8)" where 6 is the angle by which the mean anomaly has been
advanced.

Nominal Error Assumptions

This estimation scheme requires an estimate of the error in the knowledge
of each piece of information. In particular, we must know the initial
covariance matrices, P and PAR, which represent the second-order statistics of
the knowledge of the state vector, and of the deviation of the state wvector
from the nominal. These matrices are assumed diagonal in a launch coordinate
system, and the values are listed in table III. These nominal rms errors
were used as initial values in both the P and PAR matrices at launch from
the Earth and again at launch from Mars. In the swingby trajectory, where
the vehicle passes Venus without stopping, the P and PAR matrices are
continuous.

Also listed in table III are the nominal values of the errors in making
and measuring velocity corrections, and the error associated with making
observations. In connection with the observation noise, the "Radius Uncer-
tainty/Planet Radius" was assumed to be 100 times as large for Deimos and
Phobos as for the other solar system bodies, and they were also assumed to
have a much larger position uncertainty. For certain runs, these nominal
error values were changed. These changes are specifically indicated in the
appropriate places.

Observation Schedules

In the lunar guidance studies, operational requirements indicated that
it would be desirable to take relatively few observations. The flight time
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to the Moon is about 2 days, and during this time about 40 observations must
be taken to reduce the arrival uncertainty to a desired minimum. Although
more observations certainly could be made, they do not seem desirable or
necessary.

In the interplanetary mission, however, we have a somewhat different
situation. Here we have a long flight of a hundred or more days, and marginal
accuracy can be obtained with observations spaced every several days during
the major portion of the flight, and a concentration of observations at the
beginning and end of the flight. However, operationally, it seems quite
reasonable and probably desirable to take at least daily observations so that
the astronauts can chart thelr progress.

If one uses this large amount of information in the navigation problem,
it becomes difficult to tell which type of observation is useful and which is
not. On the other hand, if one uses a minimum observation schedule, the
usefulness of individual observations becomes much more apparent. Therefore,
in considering what type of observations should be made, we have used a near
minimum observation schedule, but have also included the results of daily
observation schedules for comparison.

The lunar work has also shown (ref. 5) that it is desirable to make
observations of quantities which are changing fairly rapidly. This implies
that one should observe the departure (or arrival) planet fairly often when in
its immediate vicinity, and that in the long period of heliccentric flight,
observations need not be made too often. In considering the types of observa-
tions to be made, we will discuss first the helioccentric phase and then the
departure and arrival planetocentric phases.

Observations during heliocentric phase.- During the helioccentric phase of
the trajectory, there are many bodies which one might observe. These are the
departure and arrival planets, the Sun, other planets, and planetary satel-
lites. Considering the distances involved, one would expect that there would
be no information obtainable from the planetary satellites that could not be
obtained also from the mother planet, and therefore these bodies have not been
considered in this phase. In order to show the effect of various observations,
we will present a series of figures on which are plotted curves of position
uncertainty at arrival, ryne., vs time, and also an uncertainty ratio, which
shows the effect of changing the observation schedule. It should be noted
that the time scale for these plots is expanded at the start of the trajectory.

To show the effect of observing the Sun, we have plotted in figure 5(a)
the results of two different observation schedules used during the outbound
leg of the high speed trip. These two schedules are the same until the time
of the first velocity correction at 2.4 days. This particular initial obser—
vation schedule is a minimum schedule, with a large residual uncertainty,
which thus shows better the effects during the heliocentric phase. Subseguent
to the first correction, the schedule associated with the reference schedule
consists of theodolite measurements of both the Earth and Mars at 8-day
intervals, with several daily observations of Mars at the end. It should be
noted that this plot stops about 5 days short of periapse. The Sun-added
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schedule uses the same schedule, except that the Sun is observed every 8 days
in addition to Earth and Mars. As expected, the additional information from
the extra solar observations did decrease the uncertainty a little, by about

6 percent at 43 days. However, by 106 days the uncertainty ratio has returned
to wmity.

In figure 5(b) we have shown a similar effect for the return leg of the
same mission. In this case observations were made every 6 days of only one
body, and several observations of a given body were made before observations
were made of a different body. In the figure the same total number of obser-
vations were taken for the two cases, but solar observations were substituted
for some of the Mars and Farth observations, as indicated. It can be seen
from the figure that the run with solar observations has at times a higher
uncertainty, indicating that there is not as much information in the solar
observations as there is in the combination Mars-Earth observations, although
the difference is small. Again, at 186 days, 5 days before periapse, the
difference has decreased to a negligible amount. These data lead one to the
conclusion that there is no great need to observe the Sun.

Similar data were taken of observations of other planets, specifically
Mercury, Venus, Jupiter, and Saturn. These results are shown in figures 6(a)
and 6(b). In figure 6(a) on the outbound leg, we have shown the uncertainty
using the same reference schedule as in figure 5(a), but have added Venus
observations for the other schedule. The plot of the uncertainty ratio shows
that the added observations of Venus had very little effect. If similar
uncertainty ratios were plotted for the other planets, the deviation from
unity would be even less. In figure 6(b), we have substituted into the refer-
ence schedule of figure 5(b) some Mercury and Venus observations. This sub-
stitution gives higher uncertainties prior to 150 days, but after that time
the uncertainties are equal.

These data imply that during the heliocentric portion of the trajectory,
one can obtain all the information required by observations of the launch and
target planets, and that the Sun and other planets need not be observed,
although substitution of the Sun for some of the planetary observations is
allowable.

The data shown on these curves is also tabulated in table IV, along with
similar data for the other planets which were not shown on the curve. Since
observations of Jupiter and Saturn showed virtually no effect on the ocutbound
leg, they were not considered as observable bodies on the return leg. The
predicted uncertainty at arrival is tabulated for several values of time along
the trajectory with the last point being a few days before periapse and rein-
forces the conclusion that there is no need to observe any bodies but the
departure and arrival planets, and that what small differences do exist in
the middle of the trajectory have virtually vanished near the end.

Now consider a daily observation schedule. In figure T(a) we have shown
the uncertainty from the Sun-added schedule of figure 5(a). We have also
shown the curve for daily observations of the same bodies. It can be seen
that, as expected, the daily schedule shows considerable improvement.
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A daily observation schedule for the return leg is shown in figure T7(b),
along with the comparable curve from the reference schedule of figure 5(b).
Again, we have a sizable improvement during the heliocentric portion of the
trajectory. Table IV includes the data from these runs also.

A similar comparison of daily versus minimum schedules is presented in
table V for the Venus swingby case. For the minimum observation case, there
were single observations every 5 days from Earth to Mars, every 6 days from
Mars to Venus, and every &4 days from Venus to Earth. These spacings were
chosen to make the number of observations in each leg roughly equal. These
Observations were of either the arrival planet, the departure planet, or the
Sun. In the daily observation case, observations of all three bodies were
used each day. Again, the last point is several days before periapse. The
initial observation schedule is identical for the two cases on leaving the
Earth, but there are a few extra observations in the daily case on leaving
Mars, which gives the small difference in the uncertainty at 3 days. The
uncertainty on arrival at Venus was carried over and used as the initial
uncertainty for the Venus departure leg, so that the initial uncertainty on
leaving Venus is different for the two cases. There were a large number of
observations made near Venus and, after completing these observations, the
effect of the change of the initial uncertainty on arriving at Venus has been
virtually cancelled. From this table we again conclude that daily observa-
tions will appreciably reduce the predicted uncertainty during the latter
portion of the heliocentric trajectory. Thus, we conclude that the effect of
daily observations, over observations spaced more widely in time, is to reduce
the uncertainty more quickly. This is desirable, since it will result in more
accurate velocity corrections as will be discussed later. Thus, during the
heliocentric phase, it is apparent that it is desirable to make daily obser-
vations of the departure and arrival planets only. Observations of the Sun
or other planets will provide virtually no benefit.

Observations during planetary phases.- In the near vicinity of the
departure planet, it is necessary to take a large number of observations to
get a good determination of the departure trajectory so that an early correc-
tion of the insertion errors may be made. Also, on arrival at the target
planet it is necessary to take a large number of observations to reduce the
periapse uncertainty to a satisfactorily low level (since this cannot be done
in the heliocentric portion of the trajectory). Thus at each end of the tra-
Jectory, we must take a large number of observations. Since we are concerned
here with the trajectory with respect to the nearby planet, it seems reason-
able to observe only the nearby planet and its satellite(s), if any. We still
must ask, however, whether we should observe both the planet and its satel-
lite(s), or whether only the planet should be observed. In this report we
have considered only the natural satellites, but the conclusions should be
applicable to man-made satellites as well.

Consider first the Moon when leaving the Earth. The previous data for
the heliocentric phase have had observations of only the Earth during the
launch phase. The first 3 days of the reference schedule from figure 5(a) is
repeated in figure 8. If we now substitute Moon observations for about half
the Earth observations, there is a greater than 10:1 reduction in uncertainty
as indicated by the lowest curve in the figure. Referring back to figure 2(b),
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we can see that the vehicle, for the high speed trajectory, passes very close
to the Moon, and thus we get a large amount of very good data concerning the
downrange position. If the launch were at other times of the lunar cycle,
this beneficial effect is not as great, as is indicated by the other two
curves, where the Moon is considered to be 90° and 1800 away from its true
position.

These curves show that there is always some benefit to be gained by
making some of the early observations of the Moon, and the closer the trajec-
tory comes to the Moon, the more the benefit. It can be seen that the benefit
of Moon observations extends throughout the entire mission, although the
effect is decreasing towards the end of the trip. The reason for this benefit
is that a close passage of the Moon gives excellent information about down-
range travel and total velocity, while if there is not a close passage then
the combination of Moon and Earth measurements have a large base line which
gives better range data. Such range data are not available from observations
of the Barth only.

Most of the other data presented in the remainder of the report have used
the unfavorably located Moon on the basis that if we can get satisfactory
arrival conditions with the unfavorable Moon, then we will still be all right
with a favorable Moon and the Moon's position has provided no additional con-
straints on the launch window.

We also need to know the desirability of observing the Moon on the return
mission. This is shown in figure 9(a) for the high speed trajectory, where we
have considered the case of no Moon observations at all, some Moon observa-
tions, and some observations of Moon (180). Referring back to figure 2(e), it
can be seen that the Moon is located in a fairly favorable position, and
therefore Moon (180) will be unfavorably located. Figure 9(a) shows that
there is a large difference in the three cases, and that observing Moon (180)
is quite beneficial, with considerable additional benefit gained by observing
the Moon, and that this benefit occurs even though the number of observations
has been decreased. The components of the predicted uncertainty at arrival,
as predicted at 190.5 hours, the time of the last velccity correction, are
tabulated below.

lo Predicted Uncertainty, km

Altitude Downrange Crossrange
Earth only 8 329 L
"Moon (180) 6 63 L
Moon L 7 2
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It can be seen that the principal effect of observing the Moon is to
reduce the downrange component of the uncertainty, with an attendant minor
reduction in the altitude component. If the Moon is favorably located, there
will be a greater reduction in the downrange miss.

The effect of observing the Moon during the approach to the Earth is also
shown in figure 9(b) for the Venus swingby trajectory. In this trajectory,
the Moon position on approach is reasonably favorable as shown by figure 4(f).
The curves in figure 9(b) show again that observing the Moon is helpful in
reducing the uncertainty, and that a near passage of the Moon is even more
desirable.

Now consider the situation at Mars, which is not gquite the same as at
Earth. At Mars there are two satellites, Deimos and Phobos, whose positions
may not be very well known and which have orbits fairly close to Mars. Of
these two, it is assumed that Deimos, the outermost satellite, will prove to
be the most useful observational body because, in essence, this gives a larger
base line for the measurements.

The position uncertainty of the satellites has been assumed to be 100 knm,
in that direction which will affect the measurement, and this error has been
included as a component in the sighting error. The effect of observing these
planets on arriving at Mars is shown for the high speed trajectory in fig-
ure 10(a). The uncertainty which is plotted for the Mars only case is a con-
tinuation of the Moon (180) case shown in figure 8. When the number of Mars
only observations during the last 4 days is more than doubled (to a 15-minute
interval), the accuracy is improved by about 13. To study the effect of
observing Deimos, the extra observation schedule was used as a base, and each
set of three observations was made of Mars, Mars and Deimos. This substitu-
tion had very little effect on the over-all uncertainty. If, in addition, the
second Mars observation was changed to Phobos, the resulting uncertainty ratioc
was essentially the same,® and one would conclude that there is not much point
in observing these satellites. If, however, the accuracy with which the posi-
tion of these satellites is known is considerably greater, say 1 km, the con-
clusion would be somewhat different.

The uncertainty for the Mars only case is replotted in Ffigure 10(b).
Also shown 1s the uncertainty for the 2 Mars and Deimos case with the 1 km
position accuracy. Here the substitution of Deimos observations has consider-
able effect. This is quite reasonable, since (see fig. 1) the error in
observing Deimos for this case is considerably less than the error in observ-
ing Mars. Substitution of Phobos for the second Mars observation had little
effect, as is shown by the uncertainty ratio curve. The components of the
uncertainty at 112.3 days, the time of the last velocity correction, for these
runs and also the extra Mars case are listed in the following table.

Sa study of the detailed data showed, as assumed, that Deimos had the
greater contribution to the knowledge of the trajectory.
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lg Uncertainty, km
Deimos and Phobos Uncertainty, 1 km

Altitude Downrange Crossrange
Mars only 2k 270 19
Extra observations of Mars 21 176 17
Mars and Deimos 7 14 6
Mars and Deimos and Phobos 7 14 6

The principal effect of the observations of Deimos is a reduction in the
downrange uncertainty of about 8:1. There is also an improvement in the alti-
tude and crossrange components, although this is a considerably smaller effect.

In conclusion, the question as to whether or not to observe Deimos is a
function of the knowledge of its position. With the present knowledge, it is
probably not worthwhile. There seems to be little advantage in observing both
satellites over just Deimos.

Sextant observations.- In order to make a comparison between sextant and
theodolite type observations, the timing of the observations was kept the same
but each theodolite observation was replaced by a pair of sextant observations.
The stars for these observations were chosen so that the angle between the two
measurement planes was nearly a right angle. It was felt that this doubling
of the number of observations was justified, since there is a lot of time
available during the interplanetary flight. The results are presented in
figure 11. The theodolite case in figure 11(a) is the same as that shown in
figure 8 with Moon observations. The sextant gives essentially identical
results up to 0.7 day. The sextant case becomes slightly worse from 0.7 day
to about 1 day, after which the difference remains essentially constant. This
trajectory has a close passage by the Moon just prior to 1 day, and it appears
that it is difficult for the sextant case to gain as much information during
this interval as does the theodolite case, principally because it may be
difficult to get properly located stars in a limited star catalog.

For cases where there is no close passage, the sextant data are equally
as good as the theodolite data throughout the trajectory. This is shown in
figure 11(b), where the Moon observations of figure 11(a) were replaced by
Moon (180) observations (as in fig. 8).

Sighting Accuracy

The previous data have been presented assuming that the observation
instrument has a basic sighting accuracy of 10 seconds of arc, and that as one
approaches the observed body this noise increases, as indicated in figure 1.
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We would like to consider the effect of changing the basic accuracy of
the sighting instrument to 5 seconds of arc. Accordingly, two runs were made
using identical observation schedules. For one run the basic sighting was the
regular 10 seconds of arc, and for the other it was 5 seconds of arc. All
other parameters were the same, including the noise increase for nearby
objects. The predicted uncertainty was determined at each point, and the pre-
dicted uncertainty ratio was computed by dividing the uncertainty for the
5 seconds run by the uncertainty for the 10 seconds run. The results are
plotted in figure 12.

The uncertainty ratio started out at 1.0, since the initial uncertainty
is not dependent on the sightings. The uncertainty ratio dropped fairly
quickly to about 0.6, where it remained until the very end of the trajectory,
when the ratio rapidly increased. Theoretically, the intermediate level
should be 0.5 after sufficient sightings to work out the effect of the initial
conditions, and should increase to near 1.0 at the end of the trajectory, when
the dominant noise on the observations is the uncertainty in the planet radius.
We have no explanation as to why the theoretical value of 0.5 is not reached.

The effect of using a more accurate sighting instrument would be to
provide a proportionate decrease in the final miss, since the uncertainty at
the time of the last velocity correction (marked in fig. 12) is still approxi-
mately 0.6. There also will be an approximately proportional reduction in the
fuel used, except for the first correction which will remain the same.

Velocity Corrections

Having considered various parameters associated with observations and
their effect on the uncertainty in the estimate of arrival conditions, we will
now turn to the question of the velocity correction schedule and its effect on
arrival error conditions. As mentioned previously, the principal requirement
is that the actual radius of periapse falls within the entry corridor. At
Mars, for a ballistic entry with entry speeds shown in table II, the corridor
is about 30 to 50 km. At Earth, the corridor for a lifting vehicle is about
30 km (refs. 1 and 2).

Before specific results are discussed, a few general comments on the
veloecity correction schedules are in order. There are two requirements
placed on this schedule. Firt and foremost it must be such that arrival con-
ditions at the target are satisfactory, and secondly, the fuel used should be

minimized.

The first of these requirements implies that there must be a correction
made after the accuracy of trajectory estimation is adequate to guarantee
safe arrival. For the observation schedule previously discussed, this means
that there must be a correction two or three hours prior to arrival periapse.
This also allows adequate time for preparations for the terminal maneuver.

22



The second of these requirements implies that there must be a correction
fairly early in the trajectory to correct injection errors. This correction
must be delayed, however, until sufficient information has been obtained about
the specific injection errors which have occurred. After making this first
correction, there will still be some residual error, caused in part by the
uncertainty in the knowledge of the estimated trajectory correction when the
correction was made and in part due to errors in making the correction. In
order to minimize the fuel requirements, one or more additional corrections
may be required.

The error in making the correction also gives further justification to
the requirement for additional corrections. If the last correction is large,
then the error in making the correction, a part of which is proportional to
the correction itself, will also be large, perhaps causing an intolerably
large miss. This can be reduced by making additional intermediate corrections.

In general, it is desirable to make a given correction as soon as
possible in order to minimize the fuel. However, then the trajectory estimate
is not as accurate so that the fuel used to make the corrective maneuver will
not be efficiently used, and subsequent corrections will be larger. In
sumary, there is an optimum correction schedule which will minimize the fuel
used and still allow safe arrival, and which is also a function of the number
of corrections made.

In this study, an effort was made to be sure that the velocity correc-
tions were somewhere near their optimum locations, but the true optimum
schedule was not determined. It was found, however, that the optimum is
fairly flat, and that the corrections could be moved around somewhat without
seriously affecting the amount of fuel used. In terms of time, more movement
is allowed of the early corrections and less of the later corrections.

There was no detailed study of the effects of varying the number of
corrections. For the fixed-time-of-arrival scheme it was assumed that either
three or four corrections would be required, with four preferred. If only
three were used, the last correction was undesirably large resulting in too
much error on arrival as will be shown later. For the radius-of-perigee con-
trol scheme, four corrections were used to give a good comparison with the
fixed-time-of-arrival scheme.

One further comment should be made on the location of velocity
corrections. There may be points on the trajectory at which it is very unde-
sirable to make a correction. To demon-
strate this, consider the adjacent
sketch. If the vehicle is at point A,
directly: opposite the target, then there Target
is no (small) maneuver which will allow
the vehicle to correct any out-of-plane
errors. Therefore, one should not try
to make a correction at a point such as A
A (or any point which is an integral
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multiple of 1800 away from the target) but should wait about 1/8 of an orbit
until a small correction can be effective.

Thus the amount of fuel used for the midcourse corrections is dependent
on the observation schedule as well as on the velocity correction schedule.
If a lot of information is collected early, then the early corrections will
be made more accurately and the later corrections will be smaller. This is
illustrated in table VI, where two trajectories from figure 8 are compared in
terms of fuel requirements as well as uncertainty. It can be seen that for
the trajectory in which the Moon was observed, as opposed to Moon (180), the
uncertainty is much smaller at the time of the first velocity correction.
This does not affect the size of the first velocity correction, which is prin-
cipally used to correct the injection errors. However, this first correction
is made more accurately so that the second correction is considerably smaller.
The second correction, in turn, is also made more accurately so that the third
correction is smaller. Thus, if the observation schedule can be adjusted so
as to reduce the uncertainty at the time of nth velocity correction, there
will be very little effect on the size of the nth correction, but there will
be a reduction in the size of the n plus first correction.

Another effect can be noticed in connection with this table. The
uncertainty at the time of the last velocity correction is nearly the same
for the two cases and, therefore, one would expect the miss at arrival also
to be nearly equal. This is true of the downrange component, which is the
largest. However, the other two components of error are roughly proportional
to the size of the velocity correction. To understand this, one must realize
that both the predicted uncertainty and the predicted miss vectors lie prin-
cipally along the trajectory, with the downrange component of these vectors
varying from 4 to 200 times the other two components. This means that most
of each correction is being used to reduce the downrange miss. Any error in
the direction in which the correction is applied will principally affect the
crossrange and vertical components of the miss, and have very little effect
on the downrange miss. ©Such an application error is, of course, proportioned
tc the magnitude of the correction so that as the correction gets larger the
vertical miss gets larger also, as shown in table VI.

There are three ways to reduce the size of the last velocity correction.
First, one can increase the information content at the time of the next to
the last correction so that it can be made more accurately. ©Second, one can
make an additional correction sometime after the second correction. Then, in
order to minimize the total fuel used, the second velocity correction should
be moved somewhat earlier. Thirdly, one can change the guidance law and not
correct the downrange component at all. This will be discussed in a later

section.

Fixed-time-of-arrival guidance.- If one applies all of the considerations
previously discussed, both as to observations and corrections, one would use

“There is an additional singularity beyond one orbit, which is not of
intereést here. A fairly detailed discussion of these singularities is given
in appendix O of reference 10.
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an observation schedule with observations of both the Moon and the Earth in
the vicinity of the Earth, daily observations of the Earth and Mars during the
heliocentric portion of the trajectory, and Mars only in the vicinity of that
planet. There would be a concentration of observations near the launch planet
to quickly reduce the predicted uncertainty, and also near the target planet
so that safe arrival within the desired corridor could be guaranteed. There
would be four velocity corrections in each leg. 5Such an observation and
velocity correction schedule is shown in table VII for each of the three tra-
Jectories discussed, and the 1o wvalues of the velocity corrections and of the
miss are shown in table VIII. Also included is the allowable corridor width
for the expected entry conditions. For each trajectory, the Moon was placed
in a relatively unfavorable location. This corresponds to departure (or
arrival) at the time of the month when the Moon provides the least information.
If the vehicle departs (or arrives) at other times of the month, better
results will be obtained.

In order that the actual trajectory will pass within the corridor with
some satisfactory degree of probasbility, the radius of periapse rms miss,
being a lo value, should be multiplied by an approximate safety factor before
being compared with the corridor width. If one uses a factor of 5 or 6, then
the arrival conditions at the Earth are satisfactory, while the arrival con-
ditions at Mars are marginal to unsatisfactory. The fuel required for the
midcourse corrections is about 90 m/sec, lg, for the outbound leg, and
30-50 m/sec for (each of) the return leg(s). It should be noted that the last
correction on approaching Mars 1s quite large, which tends to cause the large
miss.

Radius-of-periapse guidance.- As mentioned earlier, one method of
reducing the size of the final correction is to correct only the vertical and
crossrange errors, and not the downrange error. This should also have the
beneficial effect of reducing the miss at Mars. This was done by using the
radius-of-periapse guidance law. This guidance law could only be used when
inside the sphere of influence of the target planet, since otherwise the
assumptions made in the derivation would not be valid. Therefore, the early
corrections were made using the same fixed-time-of-arrival correction.

To see the effect of this guidance law, the same observaticn and velocity
correction schedule listed in table VII was used, with the exception that the
last one or two corrections (inside the sphere of influence) used the radius
of perigee guidance law (as indicated by footnote b in table VII). The
results are tabulated in table VIII b.

As expected, this guidance law has markedly reduced the size of the
velocity correction where it was used at the expense of increasing the down-
range miss. The resultant total fuel required is then about 30 m/sec, lo,
for each leg, and the arrival conditions at Mars, as well as at the Earth,
are now satisfactory.

There is an interesting additional effect on the Venus swingby mission.
In this case the fourth correction on approaching Venus has been reduced, and
also the first correction on leaving Venus is reduced. This can be explained
as follows. The fixed-time-of-arrival correction on approaching Venus not
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only reduces the periapse miss, but alsc the downrange miss. It does this,
however, at the expense of an increased deviation of the downrange velocity
error. The sensitivities of final error as a function of initial error for
the Venus-Earth trajectory are such that the net resuvlt is a larger predicted
error for the fixed-time-of-arrival scheme than for the periapse control
scheme, resulting in a larger first correction for the fixed-time-of-arrival
scheme .

Initial Deviations

In this report we have assumed a specific value for the initial
covariance of the deviation from reference. This is listed in table III. If
this initial dispersion is changed, the rms velocity corrections will also
change. To show this effect, the initial dispersion was increased by a factor
of 5, and the results are compared with the reference case in table IX.

As one would expect, the change in the first correction is directly
proportional to the change in the deviation. This first velocity correction
is designed to remove all the known errors at the time of the correction, and
if this correction was made accurately, the second correction would be inde-
pendent of the size of the first. However, there are errors in making the
first correction which are proportional to the size of the correction, and
these errors cause the size of the second error to increase with the initial
deviation and, therefore, the second correction increases. From table IX,
one can see that this increase is considerably less than proportional to the
increase in the initial deviation.

By the time of the third correction (and subsequent corrections if they
were to be made) the effect of the larger initial deviation has been essen-
tially wiped out, since the size of the third correction for both cases is
essentially the same as is the miss at arrival.

Thus the effect of the size of the initial deviation is to cause a
proportional change in the size of the first correction, a minor change in
the size of the second correction, and virtually no change to subsequent
corrections nor to the arrival miss.

Initial Uncertainties

We are also concerned with the effect of changes in the rms initial
uncertainty. To study this effect, the rms initial uncertainties listed in
table III were multiplied by a factor of 5. Since it is unreasonable to
expect that the initial dispersion would be smaller than the rms uncertainty,
the initial dispersion was also multiplied by a factor of 5, as in the previ-
ous section. The resulting rms predicted uncertainty is compared with the
reference case in figure 13. By the time of the first velocity correction,
at 2.4 days, the rms predicted uncertainty ratio is nearly unity and, at
106 days, when the second correction is made,the ratio is even closer to unity

26



The rms velocity corrections for this case are given in table IX, using
the same reference as for the increased initial dispersion. The velocity
corrections should be compared with those of the increased initial dispersion
case, since the rms uncertainty and dispersion were both increased. The
increased initial rms uncertainty had only a minor effect on the size of the
velocity corrections.

CONCLUDING REMARKS

This report shows that a self-contained on-board navigation system for
interplanetary flights is feasible from a performance point of view. Such a
system can use a sextant which is accurate to 10 seconds of arc for obtaining
data. During the major portion of the flight, observations every day are sat-
isfactory but, at the start and end of each flight, observations spaced 15 min-
utes apart may be required. During the initial and final phases, these
observations should be only of the nearby planet and its satellites. However,
the position of the Martian satellites has to be known more accurately than
at present for them to be of use. During the heliocentric trajectory, obser-
vations of only the launch and target planets are satisfactory, with obser-
vations of the Sun or the other planets then contributing very little
additional information.

The scheme studied uses four midcourse velocity requirements for each
leg of the trip, and uses a radius-of-periapse guidance law inside the sphere
of influence of the target planet with a fixed-time-of-arrival law elsewhere.
The fuel requirement is about 30 m/sec for each leg of the mission, and the
rms miss in the radius of periapse at arrival is L to 5 km, which will satisfy
the corridor requirements of 30 km with a fairly high degree of probability.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 23, 1964
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APPENDIX A
DERTIVATION OF S MATRIX

To evaluate the performance of a space vehicle which undergoes velocity
maneuvers, the covariance matrix of the uncertainty vector in applying the
velocity maneuvers must be evaluated. Battin in reference 11 has derived an
expression which assumes that the inaccuracy in establishing & commaaded
velocity vector is due to random errors in orientation and thrust magnitude.
Although this error model is satisfactory for large velocity maneuvers, a
third random error becomes predominant for small velocity corrections. This
third error which must be considered is engine cutoff. The purpose of this
appendix is to derive the covariance matrix for the uncertainty in applying a
velocity correction when this cutoff term is included. Battin's derivation
and notation (ref. 11) will be used as the format for this derivation.

The vector uncertainty 1 in establishing a commanded velocity
correction A& is due to errors in cutoff, thrust magnitude, and orientation.
These errors are assumed to be independent random errors with zero mean.

Consider a coordinate system chosen such that the commanded velocity
correction vector is along the Z axis. Then 1f M 1is the transformation
matrix which relates this selected axis system and the original reference

. A .
system, the commanded velocity vector A4Av 1is

0
M = a%M| 0 (A1)
1

Define K as an error proportional to the thrust magnitude, and € as the
thrust cutoff error, where K and € are random variables with zero mean.

The applied velocity magnitude is given by

v o= (L + KOG + ¢ (A2)

Let 7 %be a random angle between the
A<\/ AV commanded velocity vector, Aﬁ , and the
vV -, . applied velocity vector, Av. Further-
conunqnded"”—’ ‘4 ,,.cpeuggfg?OC”y more, let B be a uniformly distrib-
vd%ﬂg¥ | uted angle over the interval
ve : 0 < B £ 2n, which represents the rota-
| tion of Av about the Z axis as
N shown in sketch (a). Now, if 7 is
small so that sin y =z y and cos y = 1,
then the applied velocity vector is

given by
" [+ K ) ein b
Ny = 1 +K)&Av + ¢]M i
Sketch (a) = v+ elM| 7 Sin B (A3)
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the uncertainty vector 1 1is the difference between the commanded and applied
velocity vectors

=08 -av (k)

and the covariance matrix of the uncertainty vector 1 is defined as the
expected value of Hﬂ? which is written as

T = A AT + ov vt - AF avT - av AT (45)

Performing each of the above operations separately we have for the first term

A A n o O O
M NT =M2v | o o o M (86)
o o0 1

Performing the expected value operation this becomes

— . o o o
v AT = BE{avEMf{o o o |Mb (A7)
o 0 1

Expanding the second term of equation (A5), we have

72 cos2 B 72 sin B cos B Yy cos B
v oyl = [(1 + K2 + 2K)A02 + €@ + 2e0f + 2¢KAIM | 72 sin B cos 72 sin? B y sin B | MF
7 cos B 7 sin B 1
(48)
which has the expectedfvalue
Z o o
———e 2 —
2
o o9F = B [(1 + K2)E &v2 + <—:2J ml o Z o |uf (A9)
o O 1
.

The third term of equation (A5) may be expanded to obtain

- 0 0 0
&y AT = [(1+ K)A9P + et ]M I: 0 0 o |MT (A10)
7 cos B y sin B 1

which has the expected value

0O 0 O
PO e [o 0 ojl MT (A11)
0
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In equation (A5) the last term is as the transpose of the third term;
therefore,

- O 0 ©
tv 28T = E {a92M [o 0 o:’ ML (A12)
0o 0 1

Combining equations (A7), (A9), (All), and (Al2) with equation (A5), and
noting that equations (A7) and (Al2) cancel yields

Z o o
—_ 2 0o 0 o
TS\ AN = ¥z T A T
mt = B{[(L + KB)A2 + &M o L ofw -aPulo o ofm (A13)
0 0 1
0 0 1
Rearranging terms, we have
( ( I
7 Z 2
o 5 _E)_ 0 5 0_ 0 T ° 0 o 0 o
mt = B(KZ avaM | 0o § oMl +&@m| o -? oM + ab2m( | o 122_ o|l-]o0o o o])mM
o 0 1 o o0 1 o 0 1 0 0 1
. L J

(A1k)

Recognize that K is negligible compared to unity and note that if the
velocity 1s large compared to the cutoff error so that the product 6272/2
is small compared to E(AF292/2), then we can approximate equation (AlL) by

— _ 0O 0 © _[o o o - 0 0 Ol

we=e{au|lo o oM +eM|{0 O OMT+72—A€-2M [I] -]o o oM

- 0 0 1 0 0 1 0o 0 1
(A15)

where [I] is the unit matrix. Using equation (A7) we can reduce equation (Al5)
to

e = k2 of 8T + z [Ax'z\zl O (A16)

—_ Ay': A_{‘LT_]
} + B [ “rgad

If M were spherically distributed (i.e., no preferred direction), then
equation (Al6) would reduce to the easily computed form

T =12 ) QT + 2 [Me - oh 9T] + @ AL (a17)

Actually Ay is not in general spherically distributed, but in this study it
has been so assumed so that a simple computation could be employed in the S
matrix in equation (11).
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APPENDIX B
TERMINAT, PHASE PERTIAPSE GUIDANCE LAW

Consider a vehicle on an interplanetary flight approaching its target
planet. The vehicle will be on an orbit with respect to the target which is
assumed close to some hyperbolic reference orbit, and which can be described
by deviations 8&r(t), 8V(t) from that reference orbit. The reference orbit
and deviations are the basic information from which the guidance correction is
computed, and it is assumed that the deviations are small enocugh to allow a
linearized approximation of the guidance correction.

The objective of the variable arrival time guidance is to adjust the
velocity of the vehicle so that

() the orbit has the desired periapse range, r.., and

b

(b) periapse is located in the reference plane of motion.

No attempt is made to arrive at periapse at some reference time.

DEFINITIONS
f,v vehicle state relative to the target planet
ﬁr,ﬁh,ﬁ unit vectors in the radial, horizontal, and normal directions
where U, = —g— 3 N o= %X? ; and ﬁh = ﬁxﬂf
H Ex
Ty desired value of periapse range
te time at which a guidance correction is made
AV the guidance correction
f,Vh range rate and horizontal speed; 1 = V.ﬁr, vy = V.ﬁh
i gravitational constant of the target planet
( )c quantities associated with the reference orbit at te
(g quantities associated with the actual orbit at t,
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THE GUIDANCE CORRECTION

From two-body theory the following relation among r,rp,f,Vh occurs:

=4
Q
V,2 =
h T
I
p=-2
r

]'?2.*.2_“'. =
r 1 +p

(B1)

If the range, r, and periapse range, rp, are given, then a hodograph of
velocity components (r,Vn) which satisTy equations (Bl) can be plotted, as in

sketch (b).

i

v

U

\_(’:n"vhn)

Hodograph
_~Linearized Hodograph

Sketch (b)

/— Reference Orbit

/ —Actuai Orbit

Reference Orbit ot tc_

Reference Orblt at n—

T—Actual Orbit at t¢

Sketch (c)
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At the time of correction, te, the
vehicle has some state:

T, = Po + 0T(t,)
_ _ (B2)
= Vo + 8V(te)

<}
[

The guidance law must correct the state
Tg,Vs to some state 1ra,Vg + AV which
satisfies equations (Bl) for the
desired periapse range; that is, the
actual velocity vector must be correc-
ted to some point on the hodograph.

The directions associated with the
velocity components of the hodograph
are Urg and Upn, where Up is to be
determined such that it is in the
desired plane of motion and the correct
sense of orbital rotation about the
target is maintained.

The hodograph will be approximated
by its slope in the region of interest,
that is, by its slope at the point
(¥,,Vhy) which is taken to be the range
rate and horizontal speed on the refer-
ence orbit at the range rg (see
sketch (c)). These components satisfy
equations (Bl) for the range r, since
the reference orbit has the desired
periapse range. Their values, to a
first-order aspproximation, are given
by



. . ar )
cC
avy,
z V| + | ==
P (dr>c

Ar =rg - T

~"

[a]
|

(B3)

where

c = = dr. Urc

J

The derivatives in equations (B3) are taken along the reference orbit at tae

@) oL (2 _u
<d_r e TeTe (hc
Te

Let Uf ,Uh be the radial and horizontal unit vectors in the desired
plane of motlon, and let U,S5 be the unit normal and tangent vectors to the
hodograph at (rn,th) The unit vectors U,8 may be obtained by substituting

equations (B3) and (B4) into (Bl), giving

[

) (B)

U = (~opUp, + Uh) N1 + an® 1
§ = (Ur, + anln) N1 + op?
where > (B5)
2
aﬁ:.ﬁ__tanyn
l—p2
a,
T rp
tanynz_—.’ p ===
th & ta /

vV = Vn + CS
where
.‘—, = . = (B6)

n rnUfa + thUh

Q
Il

arbitrary constant
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The optimum correction (minimum distance from Va to the linearized _
hodograph) is the one which just cancels out the part of the vector Vg - Vp
which is perpendicular to the hodograph; that is, the guidance correction is

A = (V, - V) - [(Vn - Tg).818 (B7)

\ Sketch (d) illustrates a case in which
the actual velocity, Vg, lies in the
desired plane of motion. A change in
velocity to any point on the linearized
hodograph will give the desired peri-

) apse range to a first-order approxima-
tion, but the smallest correction is
the one which cancels only the devia-
tion of Vg normal tc the vector, S.

vl

dg\d“
% .
A v, PLANE OF MOTION
/-Hodogruph
Li ized Hod h
o/ Hinearized Hodograp All the guantities involved in

4

equation (B7) are known except Up, the
Sketch (4) unit horizontal vector in the plane of
the corrected orbit. This vector is determined so that periapse is located in
the plane of the reference orbit and that the corrected orbit has the same
sense of rotation around the target planet as the reference orbit. It may be
noted that the reference approach orbit may be very nearly radial at entrance
to the sphere of influence of the target so that the deviated orbit may have
a sense of rotation opposite to the reference orbit even for small deviations
dr,dV.

Let
6 = true anomaly on the corrected orbit at t.
Ty, = U, + o0y (B8)
then _ _
AU, = i—Z- - i—z = % [6F - (BF.Ury)Ur,]

Assume that 6 and ﬂh differ from O, and ﬁhc by small quantities

6

e + A0

Un

ﬂhc + Aﬁh
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This form of _ﬁh gives the correct sense of rotation - the assumption
Uy = —Uhc + AUp  would reverse the rotation. The periapse position on the
corrected orbit is

ﬁP = Ccos eﬁra + sin eﬁh

Since we require that ﬁp be in the reference plane of motion (see
sketch (e)), then

ﬁP.ﬁc =0 =cos 0 Aﬁf.ﬁc + sin © Aﬁh.ﬁc

Second-order quantities in this equation
are neglected and, assuming & 1is not
near zero, the normal component of
AT, is found to be

North

- Br.N,
Ay N, = -ctn 6, To

Similarly, U, 1is perpendicular to
Ura, SO

[_.Ih-ﬁra =0 = ﬁhc .Aﬁr + [_J.rc -Aﬁh

After the expression for AU, in equa-
tion (B8) is introduced, this yields
the radial component of AUy as:

- 8% . Une
AUh'UI'c = - r—c‘
Finally,_éﬁh.ﬁhc is negligible. The Sketch (e)
vector Up 1is therefore
Ty = Une - ctn 6 2N §, - 22-Uhe (39)
Te e

GUIDANCE LAW

Thé guidance law, equation (BT), can now be reduced to final form. The
vector Vyp differs from the reference velocity, Ve, by a small quantity and
hence can be written as,

Vg = Vo + AV,
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where AV, can be obtained by introducing the expressions in eguations (B3),
(B8), and (B9) into equation (B6)

_l/at\ <= & Vhe oo o =
= [<E CSI'.UI.C - Tc— or. C]Urc

e Vhe = XN
+ il ctn 8¢ J(dr.No)Ne + second-order quantities (B10)
c

By use of equations (B2), the factor V, - V5 which appears in the guidance
law becomes

The unit vector, S, differs from §c by a small quantity, so that the
guidance equation, to first order in small quantities, is

AV = (A - BV) - [(&V, - 8V).8.18 (B11)

where _ _ _
Sc = (Ufc + “cUhc)/Vl + g2
ﬁc = (—Cbcﬁrc + I_jhc)/'l + G.-CZ

2 T, r
Qe = —Pc®  tan Ve tan 7, = =&, pe = R
l - DC2 th rc

and equation (Bll), after utilizing (B1O), reduces to

AV = U, (W.SF - U, .07) + N, (Kdr.N, - 8V.0,) (B12)
where
_ avy _ >
W={l: <> <dr C:lUrc+l—p2chh}/l+aC
T \%
K=_S%_ —EE ctn 6
Te Te ¢
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The derivatives which appear in W have already been given in equations (BY4)
The coefficient of Nz in the guidance law adjusts the plane of motion and
depends only on the components of ®F,3V normal to the reference orbital
plane. The coefficient of ﬁé adjusts the velocity vector to obtain the
desired periapse range and depends only on the components of 87,5V in the
reference orbital plane. The response to a velocity deviation, 6V, is to
cancel all of &V except for the part along Se which does not, to first
order, affect the periapse range.

In the notation of the text, let x be the deviation state vector.
Equation (Bl12) then has the form:

v = [(.[—.ICWT + Kﬁc ]ﬁcT) —(ﬁcﬁcT + NcNCT) ]X (Bl3)
The following form can also be obtained (refer to eq. (Bll))
V = (I-8.8.T) (B -I)x (B1k4)

where
Vhe /= = T = = T\ To = - - o T
B = Uchfc -5, UreUhe + UnUre +-—- Uthhc + KN.No

Equation (BlY) may be compared to the fixed-time-of-arrival guidance law in
which the factor (A YA; -I) is analogous to the factor (B -~I) of (Bih)
The factor (I-ScS.T) is the effect of optimizing the guidance correction,

since, if the correction were not optimized, then the guldance law would be

N =V, - Vg =4V, -8V =(B -I)x

PERIAPSE MISS DISTANCE

The goal of the terminal guidance system is to obtain the desired value
of periapse. A quantity of special interest to the statistical analysis of
the text is, therefore, the error in achieving this goal.

The hodograph equations(Bl) can be inverted to obtain an expression for
rp as follows:

- B -
D T g2 _ 2(n/7) u/r < 1 (B15)

where equation (B15) assumes hyperbolic orbits [V2/(u/r) > 2]. This expression
gives the periapse range as a function of the independent variables, r, Vﬁ, V2,
whose values on the actual orbit differ from their reference values by small
amounts. Hence, the periapse miss distance can be computed from the linear
approximation:
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Oor r r
2 (2R a4 (RN Ay <_5__13_>A2
ey <6r ), + @Vh2>c he + S, \% (B16)

The derivatives in this equation are obtained from equation (Bl5):

V2 - B2

Brp he p‘grc
(o) =, o
cy2_, B

h
e c r,

1 Tp
= Bl

). = G
OV2 ¢ \ovE/e

The deviations of the independent variables, Ar, AVz, Ath, are related to
the state deviations, to first order, by

\
Ar = 8F.Up,
- To _
N2 = 2thUhc.(6f - ;S 6r) P (B18)
AV2 = 2V, .87 )

Substituting equations (B18) into (Bl6) gives

dr . Vh. /Or
P c e DY s -
o U -2 = | —E 1 . Or
ATp [ Jr/, Te Te \5V2/, hC]

R COLREN (CRIEIN MR

274 .87 +Zp . OV (B19)

where Zl,Z2 are substitute symbols for the expressions in the brackets.
By use of equations (B17) the vectors, 71,75, become
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2

~ He r N-I'p\)‘—’ _ 1
7. = — M1 - —= - tan 7.U
1 pc H% = urp L Pa Hcg To c hc_‘
) (B20)
7, = kefpfe |_ 24 i (1 - 0.2)T
o = o, tan 7cUp, + Pe Uhc
e = brp J

vhere H. 1s the reference angular momentum rthc .

Finally, in the notation of the text, let Z,x be sextuples of periapse
derivatives (given by egs.(B20)) and state deviations

7T [_p> orp (ﬁ)]
axc byc aZc

xT = (8x,8y, « - . , B2)

I

(B21)

I

and then equation (BL9) has the form

ory = 71y (B22)
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TABLE I.- PLANETARY AND SATELLITE REFERENCE ORBITAL EIEMENTS;
EQUINOX AND ECLIPTIC OF JANUARY 6.0, 1964

et Ml [l e R o
Mercury 7.00406  +1! 47.90470 ~58i 76.89552 +431 0.387099;0.205627? 23.10500? k.092339
‘Venus | 3.39427 .o! 76.35583  -1361131.06475 2 .723332; .006790?231.20800{ 1.602130
'Earth ; 0 0 0 of102.32127 +87 1.000000 .016724 2.30280 .985600
|Mars E 1.84k901 o: 49.27997 -172 '335.39657 +121- 1.523691: .0933725331.397001 524033
Jupiter 1.30480  0°100.0619%  -105 13.75575 +59° 5.202800 048452 189.58047 .083091
Saturn 2.480k7 0:113.31120 -137| 92.37681 154 9.538840  .055647 310.54525 | .033460
Moon 5.14540 03101.09490 +529900 | 59.008k40 +1114000‘6o.266500‘ .054900'285.6243o‘ 13.064992
Deimos 37.42647 111 k9.57362 -173|324.50357 174800 7.040000] .003100 |312.48000| 285.16196

Phobos 37.71684 -112| L9.30517 -167] 87.69350 +4326000| 2.815000| .017000 {184.32000(1128.84k4]1

Variations are specified per 100 days in units of the fifth decimal place with respect to the fixed

equinox.
satellites.

Angles are in degrees; major axis is in AU for the planets and in planet radii for the
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TABLE 1I.- TRAJECTORY CONDITIONS

Departure conditions

Arrival conditions

Trajectory and leg Date Vii?gigy,Alt;;Pde, Trégygime, Date Viiygézy’ Altiggde,
High speed May 31.57, 1971 |11.761 160.00 | 112.43 Sept. 21.00, 1971 8.49 -3.54
Earth to Mars

High speed Sept. 27.22, 1971 9.813 300.32 | 190.77 April %.98, 1972 | 1k4.26 -2.96
Mars to Earth

Low speed June 1.95, 1971 | 11.469 159.79 | 153.02 Nov. 1.97, 1971 6.25 16.1h
Earth to Mars

Low speed Nov. 7.97, 1971 8.053 299.62 | 251.02 July 15.99, 1972 | 15.49 4. hg
Mars to Earth

Venus swingby Sept. 9.49, 1975 | 12.020 159.27 | 170.01 Feb. 26.49, 1976 7.76 26.43
Earth to Mars ‘

Venus swingby March 27.55, 1976 7.097 499.90 | 185.5k4 Sept. 29.10, 1976| 14.69 3363.59
Mars to Venus

Venus swingby Sept. 28.54, 1976 14.992 3349.96 | 124.9%  |Jan. 31.48, 1977 | 13.91 | -11.06

Venus to Earth

|

Velocity and altitude are at periapse of the vacuum hyperbola.

Dates are given in universal time.




TABLE III.- NOMINAL RMS ERROR VALUES, lo

Initial Deviation and Uncertainty

Altitude 3.2187 km or 2 miles
Downrange 4.8285 km or 3 miles
Crossrange 1.60935 km or 1 mile
Vertical velocity 4h.h7 m/sec or 10 miles/hr
Downrange velocity 1.788 m/sec or 4 miles/hr
Crossrange velocity 1.341 m/sec or 3 miles/hr

Errors in Making Velocity Correction

Magnitude 1 percent
Direction 1 degree

Cutoff 0.2 m/sec

Errors in Measuring Velocity Correction

1 cm/sec, equally likely in all directions

Observation Noise

Instrument Error, Qinst 10 seconds of arc
Radius uncertainty/planet radius, c 0.001 (Sun, Mercury, Venus,
Earth, Mars, Jupiter,
Saturn, Moon)
0.01 (Deimos, Phobos)
Position uncertainty, Bpg 1 km (Sun, Mercury, Venus,
Earth, Mars, Jupiter,

Saturn, Moocn)

100 km (Deimos, Phobos)
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TABLE IV.- EFFECT OF OBSERVING THE SUN OR OTHER PLANETS
IN ADDITION TO THE DEPARTURE AND TARGET PLANETS

High-speed mission

Predicted uncertainty at arrival, km

Other observed
bodies

None
Sun
Mercury
Venus
Jupiter
Saturn

Sun®

None
Sun
Mercury, Venus

Sun®

3

35

o7

18,812
18,812
18,812
18,812
18,812
18,812

18,812

16;585
15,757
16,186
16,015
16,535
16,585

10,861

8,863
8,610
8,540
8,696
8,819
8,862
4,140

Time, days

Time, days - outbound leg

106

1,740
1,73k
1,738
1,736
1,738
1,740
931

2

69

130,425
130,425
130,425
130,425

33,862
32,812
30,720

9,09

7,545
8,759
1,790

1,b7h
1,526
584

189

686
682
689

336

8Daily observations of Earth, Mars, and Sun.




TABLE V.- EFFECT OF DATLY OBSERVATION SCHEDULE, VENUS SWINGBY MISSION
OBSERVING THE DEPARTURE AND TARGET PLANETS, AND THE SUN

Predicted uncertainty at arrival, km

Obééfgatigg_v“_ ‘ o - )
schedule - B Ear#ij%?rs légi
3 days | 53 days | 108 days | 161 days
Minimum 3,797 3 :738 3,070 1,053
Daily 3,797 3,466 | 1,639 506
o 7 Mars-Venus leg
3 63 | 123 179
Minimum 105,695 71,565 ] 19,992 | 1,15k
Daily 101,587 | 21,376 7,936 493
Venus-Earth leg
2 | e |1 118
Minimum 2,5657 2,468 2,003 599
Daily 2,610 2,043 935 L 37
I R AU S




TABLE VI.- EFFECT OF EARLY REDUCTION OF UNCERTAINTY ON FUEL USED
(rms values)

Observations

First AV
Uncertainty
Second AV
Uncertainty
Last AV

Uncertainty

Arrival miss

Total corrective velocitya

Vertical
Downrange

Crossrange

days

Time,

2.4

106.0

112.3

Moon

(high early accuracy)

11.29
676.37
7.0k
534,43
39.19
2ko. k1
57.53
8.10
2Lo. k2
4.8k

11.26
13,282.54
22.08
2,138.30
161.63
271.33
195.01
23.85
272.29

18.66

[ Moon (180) |
(low early accuracy)

#elocity corrections in meters/sec.

L6

Uncertainties and miss in km.



TABLE VII.- OBSERVATION SCHEDULE

(a) High-speed mission, outbound leg

Time, days _Observations
Initial time Increment Number 7 Body
0.0k 0.01 10 Earth
Ak .01 10 Moon (180)
3 1 L Earth
.7 il 6 Moon (180)
1.3 A 6 Earth
1.9 .1 5 Moon (180)
2.4 Velocity correction
3.0 1.0 o8& Earth and Mars
100.5 Velocity correction
101.0 1.0 102 Earth and Mars
110.1 a1 1k Mars
111.5 .05 8 Mars
111.9 Velocity correctionP
111.95 1 Mars
112.0 .0l 29 Mars
112.3 Velocity correctionP
112.32 0L 9 Mars
112.43 Periapse (Mars)

&Rach observation is of two bodies.

bThis correction was either fixed time of arrival, or radius of periapse
control, depending on the guidance law under study.



Initial time

Time, days

0.1
3.0
87.5
88.0
166.5
167.0
179.0
188.5
188.9
189.3
189.6
189.7
190.0
190.1
190.2
190.3
190.4
190.5
190.55
190.77

Increment Number
0.1 20
1.0 852

Velocity correction

1.0 79%
Velocity correction
a
1.0 12
5 192
i L
i b
J 3

Velocity correctionP
.1
.02
.02
.01

.01

O WO WOV U g w

.01

Velocity correctionP

.05 L

8Each observation is of two bodies.

TABLE VII.- OBSERVATION SCHEDULE - Continued

(b) High-speed mission, return leg

Observations

Body

Mars

Mars and BEarth

Mars and Earth

Mars and Earth
Barth and Moon (180)
Earth

Moon (180)

Earth

Moon (180)
Earth
Moon (180)
Earth
Moon (180)

Earth

Earth

Perigee

PThis correction was either fixed time of arrival, or radius of periapse

control, depending on the guidance law under study.
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Initial time

Time, days

0.04
Lk
3
-7
1.3
1.9
2.4
3.0
141.5
142.0
150.5
152.0
152.45
152.50
152.85
152.87

153.02

Increment Number
0.01 10
.01 10
2 b
1 6
d 6
A 5

Velocity correction
1.0 1392

Velocity correction

1.0 92
.1 15
.05 9

b

Velocity correction
.01 34

Velocity correctionP

.OL 9

8Fach observation is of two bodies.

TABLE VII.- OBSERVATION SCHEDULE - Continued

(c) Low-speed mission, outbound leg

Observations

Body

Earth
Moon (180)
Farth
Moon (180)
Earth

Moon (180)

Mars and Earth

Mars and Earth

Mars

Mars

Mars

Mars

Periapse (Mars)

bThis correction was either fixed time of arrival, or radius of periapse
control, depending on the guidance law under study.
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TABLE VII.- OBSERVATION SCHEDULE - Continued

(&) High-speed mission, return leg

Time, days Observations
Initial time Increment Number Body
0.1 0.1 20 Mars
3.0 1.0 902 Mars and Earth
R.5 Velocity correction
93.0 1.0 135% Mars and Earth
227.5 Velocity correction
228.0 1.0 12% Mars and Earth
240.0 5 18% Barth and Moon
2k8.6 1 L Earth
249.0 A Ly Moon
2hg L A L Earth
249.8 1 L Moon
250.2 Velocity correctionb
250.3 0L 9 Earth
250.4 .01 9 Moon
250.5 .01 9 Earth
250.6 .01 9 Moon
250.7 0L 9 Earth
250.8 Velocity correctionP
250.85 .05 3 Earth
251.02 Perigee

8FEach observation is of two bodies.

PThis correction was either fixed time of arrival, or radius of periapse
control, depending on the guidance law under study.
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Initial

time

0.
R
2k

2

3

160.
161.
168.
169.
169.
169.
169.
169.

170.

ok

.30
.70
.10
.50
.90
.30

.0

>
0
>

>
66

68
88
90

0ol

Time, days

Increment Number

0.01 10

.OL 10

01

A

.1

A

1

e o N

d

Veloecity correction
1.0 1592

Velocity correction

1.0 152
1 10
.02 8

Velocity correctionb
.02 10
Velocity correctionP

.02 b

8%ach observation is of two bodies.

TABLE VII.- OBSERVATION SCHEDULE - Continued
(e) Venus swingby mission, outbound leg

Observations

Body

Earth
Moon (180)
Earth
Earth
Moon (180)
Earth
Moon (180)

Earth

Earth and Mars

Earth and Mars

Mars

Mars

Mars

Mars

Periapse (Mars)

PThis correction was either fixed time of arrival, or radius of periapse
control, depending on the guidance law under study.
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TABLE VII.~ OBSERVATION SCHEDULE -~ Continued

(f) Venus swingby mission, Mars-Venus leg

Time, days Observations
Initial time Increment Number Body
0.1 0.02 10 Mars
.3 o1 27 Mars
3.0 1.0 L8 Mars and Venus
50.5 Velocity correction
51.0 1.0 99% Mars and Venus
149.5 Velocity correction
150.0 1.0 10® Mars and Venus
160.0 5 388 Mars and Venus
179.0 Velocity correction
179.5 .5 g Mars and Venus
183.5 i 10 Venus
184.5 .05 10 Venus
185.0 .02 10 Venus
185.2 Velocity correctionP
185.22 .02 17 Venus
185.54 Periapse (Venus)

8@Fach observation is of two bodies.

Pmnis correction was either fixed time of arrival, or radius of periapse
control, depending on the guidance law under study.
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TABLE VII.- OBSERVATION SCHEDULE - Concluded
(g) Venus swingby mission, return leg

Time, days Observations
Initial time Increment Number Body
0.02 0.02 30 Venus
.62 Velocity correction
.7 o1 13 Venus
2.0 1.0 808 Venus and Earth
82.5 Velocity correction
83.0 1.0 172 Venus and Earth
100.0 5 Le® Venus and Earth
123.0 Velocity correction
123.5 .05 3 Moon (180)
123.65 .05 3 Farth
123.8 .05 3 Moon (180)
123.95 .05 3 Barth
12h.1 .05 2 Moon (180)
12k.2 .01 9 Earth
124.3 Noxl 9 Moon (180)
12h.h .01 9 BEarth
124.5 .o 9 Moon (180)
124.6 .01 9 Farth
12k.7 Velocity correctionP
12k, 72 .01 16 Earth
12k .94 Perigee

8Fach observation is of two bodies.

b‘I'his correction was either fixed time of arrival, or radius of periapse
control, depending on the guidance law under study.
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TABLE VIII.- FUEL REQUIREMENTS AND MISS

(a) Fixed-time-of-arrival guidance

Size of midcourse corrections, . .
Mission Teg m/sec Radius of periapse | Downrange Allowable
First |Second |Third |Fourth|Total miss, km miss, km | corridor, km
) 5 Outbound |11.27 [10.77 [17.20 {53.64 |92.88 8.8 181 30-50
High speed| potirn 10.51 | 2.83 | 7.33 |11.13 [31.80 b7 61 30
L a Outbound |13.29 [12.57 |23.87 [42.55 |92.30 8.1 108 30-50
O SPESC Return | 11.47 | 7.37 | 9.60 |10.1k 138.58 b6 67 30
Venus Outbound |10.29 [20.18 [16.08 |2k.23 |70.78 5.4 157 30-50
!swzngy |Mars-Venus| 9.40 :15.00 | 4.57 112.66 41.63 9.k 359 —
Return 25.20 | 3.41 | 7.98 El6'8l 53.42 5.0 33 30
(b) Radius-of-periapse guidance
Hieh speed Outbound [11.272(10.77*! 5.68 | 1.1k 128.86 4.8 1173 30-50
84 =P Return 10.51%( 2.83%| 6.07 | 1.43 (20.84 5.0 Th 30
Low smeed Outbound |13.29%{12.57%*| 4.97 | 1.07 [31.93 L.2 1981 30-50
W
P Return 11.47%] 7.37% ] 8.83 | 1.52 |29.19 4.8 457 30
Venus Outbound |10.29%[20.18%(10.32 .79 |k1.61 h.6 590 30-50
swingby | Mers-Venus 9.40%(15.00% | 4.57*| 5.33 [34.30 9.6 540 —
l | Return 16,7931 2.628 ) 7.928) 2.4] |29.75 L2 518 30

8Fixed time of arrival guidance

was used for these corrections.




TABLE IX.- EFFECT OF INITTAL DISPERSION AND RMS UNCERTAINTY
(rms values)

High-speed mission, outbound leg

[ Size of midcourse corrections, m/sec Radius of periapse Downrange
| First Second Third | Total miss, km miss, km
Reference case . 11.27 | 22.08 161.66 | 195.01 23.8 272
5 times initial
dispersion - 56.45 30.33 162.91 | 249.69 2k .0 273
5 times initial
dispersion and
5 times initial 56 .44 32.93 17h.31 263.68 25.6 273
rms uncertainty

¢q
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Figure 1.- Observation noise for several bodies.
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Figure 11.- Concluded.
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Figure 12.,- Effect of sighting accuracy.
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